Squid giant axons. A model for the neuron soma?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons

Incubation of intracellulary perfused squid giant axons in [3H]leucine demonstrated that newly synthesized proteins appeared in the perfusate after a 45-min lag period. The transfer of labeled proteins was shown to occur steadily over 8 h of incubation, in the presence of an intact axonal plasma membrane as evidenced by the ability of the perfused axon to conduct propagated action potentials ov...

متن کامل

Cation Interdiffusion in Squid Giant Axons

Radiotracer techniques were used to study the influxes and effluxes of various univalent cations in internally perfused squid giant axons. Membrane currents and conductances were determined by the voltage-clamp technique under analogous internal and external conditions. Both sodium-containing and sodium-free internal and external media were studied. Membrane impedance was measured with an ac im...

متن کامل

Sodium Movements in Perfused Squid Giant Axons

Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm(2)sec and the average resting sodium influx increased from 42.9...

متن کامل

On the persistent sodium current in squid giant axons.

R. F. Rakowski, D. C. Gadsby, and P. DeWeer have reported a persistent, tetrodotoxin-sensitive sodium ion current (I(NaP)) in squid giant axons having a low threshold (-90 mV) and a maximal inward amplitude of -4 microA/cm(2) at -50 mV. This report makes the case that most of I(NaP) is attributable to an ion channel mechanism distinct from the classical rapidly activating and inactivating sodiu...

متن کامل

Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.

In this video, we demonstrate the technique of soft lithography with polydimethyl siloxane (PDMS) which we use to fabricate a microfluidic device for culturing neurons. Previously, a silicon wafer was patterned with the design for the neuron microfluidic device using SU-8 and photolithography to create a master mold, or what we simply refer to as a "master". Next, we pour the silicon polymer PD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 1976

ISSN: 0006-3495

DOI: 10.1016/s0006-3495(76)85745-1